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ABSTRACT

Convolutional neural network (CNN) is widely used in many areas such as image
recognition, object detection, and self-driving cars and it requires a huge amount of
computation and memory usage when the number of layers increases. Hence, it is
critical to reduce its computational complexity and memory usage. In this paper,
author uses 8-bit fixed-point quantization to greatly reduce the memory space
requirement of the feature maps and weights and the accuracy of LeNet-5 with
MNIST dataset is only slightly reduced. In the hardware accelerator, author
proposes a highly flexible CNN accelerator with reconfigurable layers. The layers
contain padding, convolution, ReLU, max-pooling and flatten operations, and they
are reconfigurable. The advantage of the proposed method is that by reusing layers

or circuits, it is possible to reduce hardware resources.

Keywords: artificial intelligence (Al), convolutional neural network (CNN), IC

design, software-hardware codesign, reconfigurable.

1. INTRODUCTION

In recent years, Deep Learning Neural Network (DNN) has become increasingly
popular, and there are many kinds of DNN. One popular and well-known DNN model
is Convolutional Neural Network (CNN). CNN keeps the advantage of the Artificial
Neural Network (ANN) and uses a massive network of neurons and synapses to
automatically extract features from data. It has been extensively adopted in various
applications owing to the high accuracy, such as image classification, object detection,
speech recognition, visual question answering, semantic segmentation, and self-driving
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cars. With sufficient training data and highly complex and flexible feature extraction,
CNN performs higher accuracy than traditional image processing methods in the above
applications.

As the application of CNNs becomes more complex and more accurate, the
number of layers and computation required are also increasing. For example, the CNN
models along with more than a hundred layers, such as ResNet101 [1] and DenseNet121
[2] require a considerable amount of computing resources and memory space. Therefore,
it is critical to reduce the computational complexity and memory usage of CNN.

To address this problem, many researchers have proposed various CNN
inference process acceleration techniques. In order to improve computation efficiency,
accelerators in FPGA and ASIC platforms have been proposed while GPU has a low
energy efficiency despite powerful performance.

However, since FPGA and ASIC have limited on-chip memory capacity and
limited off-chip memory bandwidth, it is necessary to reduce the memory usage. To
tackle this problem, fixed-point data quantization is a good way to relieve the memory
capacity and bandwidth pressure. Fixed-point data quantization means using shorter
fix-point number representation of weights and/or data values to represent floating-
point ones in the original system. Implementing fixed-point arithmetic units on FPGA is
much more efficient compared with floating-point number representations. It will
significantly reduce the requirement of both on-chip memory capacity and off-chip
memory bandwidth. Consequently, most of the previous CNN accelerators have been
making use of fixed-point numbers instead of floating-point numbers [3][4][5].

Smaller neural networks are more feasible to deploy on FPGAs and other
hardware with limited memory. Layer reuse is the technique that CNN layers are used
repeatedly without the need for introducing new layers to obtain the smaller network.
The layer must be reconfigurable to reuse with different input and output shapes [6].
More and more CNN accelerators are built mostly using group convolutional layers to
greatly reduce computation cost while maintaining accuracy [7][8][9]. However, CNN
contains many types of layer and it is possible to reuse in the same network.

Therefore, in this work, we propose a novel CNN accelerator design with
reconfigurable layers. The feature maps and weight are quantized with the 8-bit fixed-
point format. The contributions of this work are summarized as follows:

e We use 8-bit fixed-point to save memory usage but remain the accuracy.

e We propose a CNN accelerator, which contains padding, convolution, Rectified
Linear Unit (ReLU) [10], max-pooling and flatten operations.
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e The convolution layer, max-pooling layer and flatten layer are reconfigurable. It
is able to perform convolutional operations, max-pooling or flatten operations
respectively. A system must be flexible enough to execute different neural
network models. To achieve this, a flexible description is necessary.

2. CNN MODEL SELECTION AND DATA QUANTIZATION

This section first describes the overview of our workflow. Then it presents the
CNN model used in this work and describes the fixed-point quantization used in this
work.

2.1. Workflow overview

Figure 1 shows the flow of our work. The flow includes the software simulation
and hardware platform.
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Figure 1. Workflow overview.

The purpose of the software simulation is to prepare the parameters that are
needed for hardware design. In the software simulation, a CNN model is selected,
trained, and quantized. First, the CNN model which is suitable for implementation in
hardware CNN accelerator is selected. The configurations of the model such as the
number of layers and the filter size of each layer are generated. Then, the model is trained
on the server with the GPU to get the model parameters. Finally, in order to reduce the
bit width of data in the CNN model, the input data, model parameters (including
weights and biases) are quantized so that they can be suitable for the CNN accelerator
design.

In the hardware platform, based on the model configurations and quantized
parameters, we implement the CNN hardware accelerator. After the CNN hardware
accelerator is implemented, the quantized testing data can be used to evaluate the
accuracy of the CNN hardware accelerator.
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2.2. CNN model selection and training

First, a CNN model suitable for implementing in a CNN accelerator is selected.
Considering the hardware system and implementation, the amount of on-chip memory
is limited, and most of the data must be transferred from off-chip memory. However,
the off-chip memory data transfer time is much longer than on-chip memory. Therefore,
considering the memory issue, we decided to choose a CNN model with an insufficient
number of parameters to apply the CNN accelerator. In addition to reducing the
memory transfer time, the on-chip memory of the accelerator can also store all data for
each layer of CNN.

Based on the selection principle of the previous section, LeNet-5 [10] is selected
as the model of CNN accelerator because of the small number of parameters. The well-
known LeNet-5 based on CNN was successfully applied to character recognition. LeNet-
5 is composed of seven main layers, which are one input layer, two convolutional layers,
two pooling layers, two fully-connected layers, and one output layer, as shown in figure
2.
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Figure 2. lllustration of LeNet-5 model.

Table 1 shows the configuration about LeNet-5 model. In table 1, conv2d is the
convolutional layer, max_pooling2d is the max-pooling layer, flatten is flatten layer, and
dense is the fully-connected layer. As can be seen from table 1, the total amount of
parameters in LeNet-5 is also less than 1M. Thus, we choose LeNet-5 as the model of the
CNN accelerator.

Table 1. Summary of LeNet-5 architecture.

Layer Output Shape  Parameter #
conv2d_1 (28, 28, 16) 160
max_pooling2d_1 (14, 14, 16) 0
conv2d_2 (14, 14, 36) 5,220
max_pooling2d_2 (7,7,36) 0
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flatten_1 (1764) 0
dense_1 (120) 211,800
dense_2 (84) 10,164
dense_3 (10) 850
Total parameters 228,194

Table 2. Accuracy comparison of different fraction point positions of 8-bit data format
in LeNet-5 model.

Integer bits  Fraction bits  Accuracy
1 7 0.976
2 6 0.980
3 5 0.984
4 4 0.988
5 3 0.980
6 2 0.884
7 1 0.168

The MNIST handwritten digit database is used for training and testing. The
LeNet-5 CNN is implemented with python language in this work, in which the floating-
point feature data and weights are used. The input data of LeNet-5 is 28x28 grayscale
images, 784 bytes in total, and the images are normalized before the convolution
operation. There is padding throughout the calculation. The ReLU serves as activation
functions. If the input of this function is X, the output is max(x, 0).

After training 20 epochs, the test is processed, and the results show that the
accuracy rate of LeNet-5 implemented in this paper is up to 99.04%, which meets the

requirement.
2.3.  Data quantization

Generally, to guarantee high recognition accuracy, 32-bit floating-point data and
weights are used to train the CNN model. However, such high data precision brings
more pressure to hardware because high data precision usually requires more
computational resources and a larger memory footprint. Quantization results for
different CNN models in [11] show that 8-bit fixed-point quantization brings negligible
performance loss for several networks. In addition, the accuracy of the neural network
with more than 8-bit precision is almost equal to the floating-point. Therefore, we adopt
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an 8-bit hardware design for the smallest precision but still keeping the floating-point
format accuracy. However, the difference in the position of the fraction point directly
affects the data representative range and the precision of data.

8-bit fixed-point for the convolution weights and feature maps data are used to
test in the process of inference with different radix point position. Table 2 shows the
accuracy comparison of different fraction point positions of 8-bit data format in LeNet-
5 model. According to table 2, we can see that the 8-bit fixed-point quantization with 4-
bit integer part and 4-bit fraction part format maintains the highest accuracy. Compared
to the floating-point model, the result shows that the accuracy is slightly reduced, less
than 1%. Thus, we set the 8-bit data format, which has a 4-bit integer part and 4-bit
fraction part as the quantization for both feature maps and weights in LeNet-5 model.

3. HARDWARE ARCHITECTURE

This section first describes the whole platform. Then, it details the reconfigurable
layers. Finally, the architecture of the reuse strategy is explained.

3.1. Platform overview

Figure 3 shows an overview of the platform. The platform is implemented on
Xilinx's XC7Z020-1CLG400C FPGA, which contains a processing system and a
programming logic. The processing system contains a Zynq CPU, a DMA, and off-chip
memory. The programming logic contains a controller, a convolution unit (Conv Unit),
an erase unit (Eras Unit), a max-pooling unit (Maxp Unit), and block memories (BRAMs).
There are five BRAMs in the programming logic: Configuration BRAM, Weight BRAM,
Bias BRAM, Fmap_A BRAM, and Fmap_B BRAM. The information stored in each BRAM
is listed in table 3.

In this platform, the Zynq CPU controls the DMA to transfer data between the
off-chip memory and block memories. The Controller gets information from the
Configuration BRAM and controls the flow and execution of the entire circuit. The Conv
Unit is the convolution circuit. There is a convolution processing element inside, which
convolves M 3-dimensional filters with a 3-dimensional input feature map to generate a
3-dimensional output feature map by accumulating the partial sums. The Maxp Unit is
the max-pooling circuit, which divides an image into small subtitles of given window
size and then replaces each subtitle with its largest element. There is a max-pooling
processing element inside. Finally, the Eras Unit is the circuit that is used to make sure
the fmap BRAM is washed before it changes the role.
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Figure 3. Platform overview.

Table 3. Information stored in each BRAM.

BRAM Storage description

Configuration BRAM  3-dimensional input and output feature map size; filter size and
filter stride; padding setting and size; max-pooling setting, size,

and stride;

Weight BRAM 8-bit weights

Bias BRAM 8-bit biases
Fmap_A BRAM input/output feature map of each layer
Fmap_B BRAM output/input feature map of each layer

The operations of the platform are as follows. At first, all input feature maps and
weights are stored in the off-chip memory. The Zynq CPU controls the DMA through
the AXI bus and transfers the data into the corresponding BRAM. After the data are
transferred, the CPU sends a signal to the Controller to start the accelerator. After all the
computations are finished, the DMA moves the results back to the off-chip memory from

the fmap BRAM.
3.2. Reconfigurable layers

To further reduce the hardware resource, the layers can be reused multiple times.
We propose reconfigurable layers, which means that by changing the configuration
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parameters of the reconfigurable layers, the hardware accelerator can be easily reused in
the N-times in any network.

In this case, the LeNet-5 model contains two convolutional layers (conv-1, conv-
2), two max-pooling layers (pool-1, pool-2), three fully-connected layers (fc-1, fc-2, fc-3).
Due to the repetition of the layers that function the same, they can be reused. For
instance, the conv-2 layer can be replaced by the conv-1 layer with a set of new
configuration parameters given in table 4. Because of the different shapes between the
two layers, the hardware needs to be reconfigured to support the new shape of the
second one. The same thing happens with the rest.

Table 4. Configuration parameters for reconfigurable layers in LeNet-5.

Configuration parameter Description 1t setting 2nd setting
R Output height 28 14
C Output width 28 14
M Output depth 16 36
IR Input height 30 16
IC Input width 30 16
N Input depth 1 16
K Filter size 3 3
S Stride 1 1

nIR MAXP output height 16 7
nlC MAXP output width 16 7
nP Padding 1 0
MP MAXP stride 2 2

4. EXPERIMENTAL SETUP AND RESULTS

This section first introduces our experimental environment and then provides
the results.
4.1. Experimental setup

The experiments are divided into two steps. First, the software CNN models are
implemented in Python and trained. 8-bit fixed-point quantization has been applied for
the input data and weights in the software CNN model. After the training process is
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finished, the model's configuration, input feature map, and weights are stored for the
hardware platform.

The hardware design is implemented on the TUL PYNQ-Z2 FPGA development
board (figure 4), where the FPGA chip is XC7Z020. The development software we used
is Vivado (v2018.3). Our hardware design is programmed in Verilog and packaged into
Vivado IP to build on FPGA hardware system. We also use 8-bit fixed-point quantization
in hardware. Therefore, the data format in software and hardware computation are
equivalent, and the accuracies of the inference are also the same.

Figure 4. The hardware design in Vivado.

4.2. Results
4.2.1. Resources utilization

Table 5 shows the hardware resources utilization of the whole system. The
system of this work, as shown in figure 3, which includes the CNN accelerator, CPU,
DMA, AXI bus, BRAMs, etc. In details, the hardware implementation on FPGA has the
usage of LUT’s, FF’s, BRAM’s and DSP’s, only about 14%, 9%, 9% and 2% respectively.

Table 5. Resource utilization of proposed architecture on Pynq-Z2 FPGA.

LUT’s FF's BRAM’s DSP’s

Resouce available 53,200 106,400 140 220
This work 7,696 9,534 12 5

Ultilization (%) 1447  8.96 857 227

Therefore, this work is easily applied to the devices sensitive to power
consumption and memory footprint.
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4.2.2. Memory usage comparison

Figure 5 indicates the maximum memory usage of parameters in the traditional
CNN and this work layer by layer. The weights and input feature maps in these
networks are all represented using 8-bit fixed-point numbers. It can be seen that the
traditional CNN needs 2,796.49KB to store all of the parameters of LeNet-5 model. In
this work, the model requires only 8 bits to store each weight. Therefore, only 684.58KB
are required to store the weights in total. It is clear that memory usage of 8-bit fixed-
point weights after quantization is significantly reduced about 4 times compared to
floating-point one in every layer of LeNet-5 model.
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Figure 5. Memory usage of weights and biases in the floating-point model and this work (8-bit

fixed-point).
4.2.3. Critical path delay, cell area and power result

In order to obtain the critical path delay, cell area and power, the hardware
accelerator is implemented by Verilog and synthesized using Design Compiler with the
TSMC130nm process technology.

Table 6. Synthesis result.

Critical path delay (ns) Cell area (um?) Power (UW)

20.54 695,586 1,264.49

Table 6 indicates the critical path delay, cell area, and power consumption of the
accelerator. In the design, the minimum critical path delay is 20.54ns, the cell area is
695,586 um?, and power consumption is 1,264.49uW.
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5. CONCLUSION

In this work, we propose a hardware CNN accelerator with reconfigurable layers
reuse. We use 8-bit fixed-point to save memory usage but the accuracy is remained.
Memory storage of CNN model with 8-bit fixed-point format is reduced 4 times
compared to the floating-point model. This accelerator contains padding, convolution,
ReLU, max-pooling and flatten operations. The layers are reconfigurable. The hardware
implementation on FPGA has the usage of LUT’s, FF's, BRAM’s and DSP’s, only about
14%, 9%, 9% and 2% respectively. In the design, the minimum critical path delay is
20.54ns, the cell area is 695,586pm?, and power consumption is 1,264.49uW. In addition,
our layers can be reused for multiple times at multiple places in the CNN accelerator to
further improve the results.
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THIET KE PHAN MEM - PHAN CUNG CHO BO TANG TOC MANG NO-RON
TICH CHAP (CNN) CO KHA NANG TAI CAU HINH
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TOM TAT

Mang no-ron tich chdp (CNN) dugc ap dung rong rai trong nhiéu linh viec nhuw nhan
dang hinh anh, phat hién d6i teong, xe tw 14i, n6 yéu cau tinh toan va b nhé 16n khi
s0 luong 16p tang. Vi vay, viéc giam do phtc tap tinh toan va st dung bd nhé 1a rat
quan trong. Trong nghién ctru nay, tac gia ap dung luwgng tr héa ddu phdy tinh 8 bit
dé€ giam dang ké yéu cau bo nhd cho ban d6 déc trung va trong so, trong khi do
chinh xac ctia LeNet-5 trén tap dit liéu MNIST chi giam mot cach khong dang ké. Vé
phén ciing, tac gia dé xudt mot bd tang toc CNN cuc ky linh hoat véi cac 16p c6 thé
tai cdu hinh. Cac 16p nay bao goém cac chirc ndng padding, convolution, ReLU, max-
pooling va flatten, va chiing c6 thé duoc tai cdu hinh. Loi thé cua phuong phap dé

xuat la cé thé tai st dung cac 16p hodc mach, gitp giam tai nguyén phéan cing.

Tw khoa: tri tué nhan tao (AI), mang no-ron tich chap (CNN)), thiét ké vi mach, dong

thiét k€ phan mém — phan ciing, cau hinh lai.
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