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ABSTRACT 

Convolutional neural network (CNN) is widely used in many areas such as image 

recognition, object detection, and self-driving cars and it requires a huge amount of 

computation and memory usage when the number of layers increases. Hence, it is 

critical to reduce its computational complexity and memory usage. In this paper, 

author uses 8-bit fixed-point quantization to greatly reduce the memory space 

requirement of the feature maps and weights and the accuracy of LeNet-5 with 

MNIST dataset is only slightly reduced. In the hardware accelerator, author 

proposes a highly flexible CNN accelerator with reconfigurable layers. The layers 

contain padding, convolution, ReLU, max-pooling and flatten operations, and they 

are reconfigurable. The advantage of the proposed method is that by reusing layers 

or circuits, it is possible to reduce hardware resources. 

Keywords: artificial intelligence (AI), convolutional neural network (CNN), IC 

design, software-hardware codesign, reconfigurable. 

 

1. INTRODUCTION 

In recent years, Deep Learning Neural Network (DNN) has become increasingly 

popular, and there are many kinds of DNN. One popular and well-known DNN model 

is Convolutional Neural Network (CNN). CNN keeps the advantage of the Artificial 

Neural Network (ANN) and uses a massive network of neurons and synapses to 

automatically extract features from data. It has been extensively adopted in various 

applications owing to the high accuracy, such as image classification, object detection, 

speech recognition, visual question answering, semantic segmentation, and self-driving 
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cars. With sufficient training data and highly complex and flexible feature extraction, 

CNN performs higher accuracy than traditional image processing methods in the above 

applications. 

As the application of CNNs becomes more complex and more accurate, the 

number of layers and computation required are also increasing. For example, the CNN 

models along with more than a hundred layers, such as ResNet101 [1] and DenseNet121 

[2] require a considerable amount of computing resources and memory space. Therefore, 

it is critical to reduce the computational complexity and memory usage of CNN. 

To address this problem, many researchers have proposed various CNN 

inference process acceleration techniques. In order to improve computation efficiency, 

accelerators in FPGA and ASIC platforms have been proposed while GPU has a low 

energy efficiency despite powerful performance.  

However, since FPGA and ASIC have limited on-chip memory capacity and 

limited off-chip memory bandwidth, it is necessary to reduce the memory usage. To 

tackle this problem, fixed-point data quantization is a good way to relieve the memory 

capacity and bandwidth pressure. Fixed-point data quantization means using shorter 

fix-point number representation of weights and/or data values to represent floating-

point ones in the original system. Implementing fixed-point arithmetic units on FPGA is 

much more efficient compared with floating-point number representations. It will 

significantly reduce the requirement of both on-chip memory capacity and off-chip 

memory bandwidth. Consequently, most of the previous CNN accelerators have been 

making use of fixed-point numbers instead of floating-point numbers [3][4][5]. 

Smaller neural networks are more feasible to deploy on FPGAs and other 

hardware with limited memory. Layer reuse is the technique that CNN layers are used 

repeatedly without the need for introducing new layers to obtain the smaller network. 

The layer must be reconfigurable to reuse with different input and output shapes [6]. 

More and more CNN accelerators are built mostly using group convolutional layers to 

greatly reduce computation cost while maintaining accuracy [7][8][9]. However, CNN 

contains many types of layer and it is possible to reuse in the same network. 

Therefore, in this work, we propose a novel CNN accelerator design with 

reconfigurable layers. The feature maps and weight are quantized with the 8-bit fixed-

point format. The contributions of this work are summarized as follows: 

• We use 8-bit fixed-point to save memory usage but remain the accuracy. 

• We propose a CNN accelerator, which contains padding, convolution, Rectified 

Linear Unit (ReLU) [10], max-pooling and flatten operations. 
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• The convolution layer, max-pooling layer and flatten layer are reconfigurable. It 

is able to perform convolutional operations, max-pooling or flatten operations 

respectively. A system must be flexible enough to execute different neural 

network models. To achieve this, a flexible description is necessary. 

 

2. CNN MODEL SELECTION AND DATA QUANTIZATION 

This section first describes the overview of our workflow. Then it presents the 

CNN model used in this work and describes the fixed-point quantization used in this 

work. 

2.1. Workflow overview 

Figure 1 shows the flow of our work. The flow includes the software simulation 

and hardware platform. 
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Figure 1. Workflow overview. 

The purpose of the software simulation is to prepare the parameters that are 

needed for hardware design. In the software simulation, a CNN model is selected, 

trained, and quantized. First, the CNN model which is suitable for implementation in 

hardware CNN accelerator is selected. The configurations of the model such as the 

number of layers and the filter size of each layer are generated. Then, the model is trained 

on the server with the GPU to get the model parameters. Finally, in order to reduce the 

bit width of data in the CNN model, the input data, model parameters (including 

weights and biases) are quantized so that they can be suitable for the CNN accelerator 

design. 

In the hardware platform, based on the model configurations and quantized 

parameters, we implement the CNN hardware accelerator. After the CNN hardware 

accelerator is implemented, the quantized testing data can be used to evaluate the 

accuracy of the CNN hardware accelerator. 
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2.2. CNN model selection and training 

 First, a CNN model suitable for implementing in a CNN accelerator is selected. 

Considering the hardware system and implementation, the amount of on-chip memory 

is limited, and most of the data must be transferred from off-chip memory. However, 

the off-chip memory data transfer time is much longer than on-chip memory. Therefore, 

considering the memory issue, we decided to choose a CNN model with an insufficient 

number of parameters to apply the CNN accelerator. In addition to reducing the 

memory transfer time, the on-chip memory of the accelerator can also store all data for 

each layer of CNN. 

Based on the selection principle of the previous section, LeNet-5 [10] is selected 

as the model of CNN accelerator because of the small number of parameters. The well-

known LeNet-5 based on CNN was successfully applied to character recognition. LeNet-

5 is composed of seven main layers, which are one input layer, two convolutional layers, 

two pooling layers, two fully-connected layers, and one output layer, as shown in figure 

2. 

 

Figure 2. Illustration of LeNet-5 model. 

Table 1 shows the configuration about LeNet-5 model. In table 1, conv2d is the 

convolutional layer, max_pooling2d is the max-pooling layer, flatten is flatten layer, and 

dense is the fully-connected layer. As can be seen from table 1, the total amount of 

parameters in LeNet-5 is also less than 1M. Thus, we choose LeNet-5 as the model of the 

CNN accelerator. 

Table 1. Summary of LeNet-5 architecture. 

Layer Output Shape Parameter # 

conv2d_1 (28, 28, 16) 160 

max_pooling2d_1 (14, 14, 16) 0 

conv2d_2 (14, 14, 36) 5,220 

max_pooling2d_2 (7, 7, 36) 0 
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flatten_1 (1764) 0 

dense_1 (120) 211,800 

dense_2 (84) 10,164 

dense_3 (10) 850 

Total parameters 228,194 

Table 2. Accuracy comparison of different fraction point positions of 8-bit data format 

in LeNet-5 model. 

Integer bits Fraction bits Accuracy 

1 7 0.976 

2 6 0.980 

3 5 0.984 

4 4 0.988 

5 3 0.980 

6 2 0.884 

7 1 0.168 

The MNIST handwritten digit database is used for training and testing. The 

LeNet-5 CNN is implemented with python language in this work, in which the floating-

point feature data and weights are used. The input data of LeNet-5 is 28x28 grayscale 

images, 784 bytes in total, and the images are normalized before the convolution 

operation. There is padding throughout the calculation. The ReLU serves as activation 

functions. If the input of this function is x, the output is max(x, 0). 

After training 20 epochs, the test is processed, and the results show that the 

accuracy rate of LeNet-5 implemented in this paper is up to 99.04%, which meets the 

requirement. 

2.3. Data quantization 

Generally, to guarantee high recognition accuracy, 32-bit floating-point data and 

weights are used to train the CNN model. However, such high data precision brings 

more pressure to hardware because high data precision usually requires more 

computational resources and a larger memory footprint. Quantization results for 

different CNN models in [11] show that 8-bit fixed-point quantization brings negligible 

performance loss for several networks. In addition, the accuracy of the neural network 

with more than 8-bit precision is almost equal to the floating-point. Therefore, we adopt 
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an 8-bit hardware design for the smallest precision but still keeping the floating-point 

format accuracy. However, the difference in the position of the fraction point directly 

affects the data representative range and the precision of data. 

8-bit fixed-point for the convolution weights and feature maps data are used to 

test in the process of inference with different radix point position. Table 2 shows the 

accuracy comparison of different fraction point positions of 8-bit data format in LeNet-

5 model. According to table 2, we can see that the 8-bit fixed-point quantization with 4-

bit integer part and 4-bit fraction part format maintains the highest accuracy. Compared 

to the floating-point model, the result shows that the accuracy is slightly reduced, less 

than 1%. Thus, we set the 8-bit data format, which has a 4-bit integer part and 4-bit 

fraction part as the quantization for both feature maps and weights in LeNet-5 model. 

3. HARDWARE ARCHITECTURE 

This section first describes the whole platform. Then, it details the reconfigurable 

layers. Finally, the architecture of the reuse strategy is explained. 

3.1. Platform overview 

Figure 3 shows an overview of the platform. The platform is implemented on 

Xilinx's XC7Z020-1CLG400C FPGA, which contains a processing system and a 

programming logic. The processing system contains a Zynq CPU, a DMA, and off-chip 

memory. The programming logic contains a controller, a convolution unit (Conv Unit), 

an erase unit (Eras Unit), a max-pooling unit (Maxp Unit), and block memories (BRAMs). 

There are five BRAMs in the programming logic: Configuration BRAM, Weight BRAM, 

Bias BRAM, Fmap_A BRAM, and Fmap_B BRAM. The information stored in each BRAM 

is listed in table 3. 

In this platform, the Zynq CPU controls the DMA to transfer data between the 

off-chip memory and block memories. The Controller gets information from the 

Configuration BRAM and controls the flow and execution of the entire circuit. The Conv 

Unit is the convolution circuit. There is a convolution processing element inside, which 

convolves M 3-dimensional filters with a 3-dimensional input feature map to generate a 

3-dimensional output feature map by accumulating the partial sums. The Maxp Unit is 

the max-pooling circuit, which divides an image into small subtitles of given window 

size and then replaces each subtitle with its largest element. There is a max-pooling 

processing element inside. Finally, the Eras Unit is the circuit that is used to make sure 

the fmap BRAM is washed before it changes the role. 



 

 

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế 

 Tập 23, Số 1 (2023) 
 

131 

Programming Logic 

Reconfigurable Layers

AXI

Processing

System ZYNQ 

CPU
DMA

Off-chip 

memory

BRAM

Configuration

BRAM

Eras Unit

Conv Unit

Maxp Unit

Fmap_A

BRAM

Weight

BRAM

Fmap_B

BRAM

Bias

BRAM

Memory

Selector

Controller

 

Figure 3. Platform overview. 

Table 3. Information stored in each BRAM. 

BRAM Storage description 

Configuration BRAM 3-dimensional input and output feature map size; filter size and 

filter stride; padding setting and size; max-pooling setting, size, 

and stride; 

Weight BRAM 8-bit weights 

Bias BRAM 8-bit biases 

Fmap_A BRAM input/output feature map of each layer 

Fmap_B BRAM output/input feature map of each layer 

The operations of the platform are as follows. At first, all input feature maps and 

weights are stored in the off-chip memory. The Zynq CPU controls the DMA through 

the AXI bus and transfers the data into the corresponding BRAM. After the data are 

transferred, the CPU sends a signal to the Controller to start the accelerator. After all the 

computations are finished, the DMA moves the results back to the off-chip memory from 

the fmap BRAM. 

3.2. Reconfigurable layers 

To further reduce the hardware resource, the layers can be reused multiple times. 

We propose reconfigurable layers, which means that by changing the configuration 
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parameters of the reconfigurable layers, the hardware accelerator can be easily reused in 

the N-times in any network. 

In this case, the LeNet-5 model contains two convolutional layers (conv-1, conv-

2), two max-pooling layers (pool-1, pool-2), three fully-connected layers (fc-1, fc-2, fc-3). 

Due to the repetition of the layers that function the same, they can be reused. For 

instance, the conv-2 layer can be replaced by the conv-1 layer with a set of new 

configuration parameters given in table 4. Because of the different shapes between the 

two layers, the hardware needs to be reconfigured to support the new shape of the 

second one. The same thing happens with the rest. 

Table 4. Configuration parameters for reconfigurable layers in LeNet-5. 

Configuration parameter Description 1st setting 2nd setting 

R Output height 28 14 

C Output width 28 14 

M Output depth 16 36 

IR Input height 30 16 

IC Input width 30 16 

N Input depth 1 16 

K Filter size 3 3 

S Stride 1 1 

nIR MAXP output height 16 7 

nIC MAXP output width 16 7 

nP Padding 1 0 

MP MAXP stride 2 2 

 

4. EXPERIMENTAL SETUP AND RESULTS 

This section first introduces our experimental environment and then provides 

the results. 

4.1. Experimental setup 

The experiments are divided into two steps. First, the software CNN models are 

implemented in Python and trained. 8-bit fixed-point quantization has been applied for 

the input data and weights in the software CNN model. After the training process is 
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finished, the model's configuration, input feature map, and weights are stored for the 

hardware platform. 

The hardware design is implemented on the TUL PYNQ-Z2 FPGA development 

board (figure 4), where the FPGA chip is XC7Z020. The development software we used 

is Vivado (v2018.3). Our hardware design is programmed in Verilog and packaged into 

Vivado IP to build on FPGA hardware system. We also use 8-bit fixed-point quantization 

in hardware. Therefore, the data format in software and hardware computation are 

equivalent, and the accuracies of the inference are also the same. 

 

Figure 4. The hardware design in Vivado. 

4.2. Results 

4.2.1. Resources utilization 

Table 5 shows the hardware resources utilization of the whole system. The 

system of this work, as shown in figure 3, which includes the CNN accelerator, CPU, 

DMA, AXI bus, BRAMs, etc. In details, the hardware implementation on FPGA has the 

usage of LUT’s, FF’s, BRAM’s and DSP’s, only about 14%, 9%, 9% and 2% respectively. 

Table 5. Resource utilization of proposed architecture on Pynq-Z2 FPGA. 

 LUT’s FF’s BRAM’s DSP’s 

Resouce available 53,200 106,400 140 220 

This work 7,696 9,534 12 5 

Ultilization (%) 14.47 8.96 8.57 2.27 

Therefore, this work is easily applied to the devices sensitive to power 

consumption and memory footprint. 
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4.2.2. Memory usage comparison 

Figure 5 indicates the maximum memory usage of parameters in the traditional 

CNN and this work layer by layer. The weights and input feature maps in these 

networks are all represented using 8-bit fixed-point numbers. It can be seen that the 

traditional CNN needs 2,796.49KB to store all of the parameters of LeNet-5 model. In 

this work, the model requires only 8 bits to store each weight. Therefore, only 684.58KB 

are required to store the weights in total. It is clear that memory usage of 8-bit fixed-

point weights after quantization is significantly reduced about 4 times compared to 

floating-point one in every layer of LeNet-5 model. 

 

Figure 5. Memory usage of weights and biases in the floating-point model and this work (8-bit 

fixed-point). 

4.2.3. Critical path delay, cell area and power result 

In order to obtain the critical path delay, cell area and power, the hardware 

accelerator is implemented by Verilog and synthesized using Design Compiler with the 

TSMC130nm process technology. 

Table 6. Synthesis result. 

Critical path delay (ns) Cell area (µm2) Power (µW) 

20.54 695,586 1,264.49 

Table 6 indicates the critical path delay, cell area, and power consumption of the 

accelerator. In the design, the minimum critical path delay is 20.54ns, the cell area is 

695,586µm2, and power consumption is 1,264.49µW. 
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5. CONCLUSION 

In this work, we propose a hardware CNN accelerator with reconfigurable layers 

reuse. We use 8-bit fixed-point to save memory usage but the accuracy is remained. 

Memory storage of CNN model with 8-bit fixed-point format is reduced 4 times 

compared to the floating-point model. This accelerator contains padding, convolution, 

ReLU, max-pooling and flatten operations. The layers are reconfigurable. The hardware 

implementation on FPGA has the usage of LUT’s, FF’s, BRAM’s and DSP’s, only about 

14%, 9%, 9% and 2% respectively. In the design, the minimum critical path delay is 

20.54ns, the cell area is 695,586µm2, and power consumption is 1,264.49µW. In addition, 

our layers can be reused for multiple times at multiple places in the CNN accelerator to 

further improve the results. 
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TÓM TẮT 

Mạng nơ-ron tích chập (CNN) được áp dụng rộng rãi trong nhiều lĩnh vực như nhận 

dạng hình ảnh, phát hiện đối tượng, xe tự lái, nó yêu cầu tính toán và bộ nhớ lớn khi 

số lượng lớp tăng. Vì vậy, việc giảm độ phức tạp tính toán và sử dụng bộ nhớ là rất 

quan trọng. Trong nghiên cứu này, tác giả áp dụng lượng tử hóa dấu phẩy tĩnh 8 bit 

để giảm đáng kể yêu cầu bộ nhớ cho bản đồ đặc trưng và trọng số, trong khi độ 

chính xác của LeNet-5 trên tập dữ liệu MNIST chỉ giảm một cách không đáng kể. Về 

phần cứng, tác giả đề xuất một bộ tăng tốc CNN cực kỳ linh hoạt với các lớp có thể 

tái cấu hình. Các lớp này bao gồm các chức năng padding, convolution, ReLU, max-

pooling và flatten, và chúng có thể được tái cấu hình. Lợi thế của phương pháp đề 

xuất là có thể tái sử dụng các lớp hoặc mạch, giúp giảm tài nguyên phần cứng. 

Từ khóa: trí tuệ nhân tạo (AI), mạng nơ-ron tích chập (CNN), thiết kế vi mạch, đồng 

thiết kế phần mềm – phần cứng, cấu hình lại. 
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tốt nghiệp cử nhân chuyên ngành Công nghệ thông tin, Trường Đại học 

Khoa học, Đại học Huế. Hiện nay, bà đang công tác tại Trung tâm Công 

nghệ Thông tin tỉnh Thừa Thiên Huế (Hue CIT). 

Lĩnh vực nghiên cứu: Công nghệ phần mềm. 
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