

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế

 Tập 23, Số 1 (2023)

125

SOFTWARE – HARDWARE CODESIGN FOR RECONFIGURABLE

CONVOLUTIONAL NEURAL NETWORK ACCELERATION

Nguyen Duc Nhat Quang1*, Nguyen Thanh Binh2, Pham Thi Thuy Sang3

1 Faculty of Electrics, Electronics Engineering and Material Technology,

University of Sciences, Hue University

2 Office for Financial Planning & Facilities, University of Sciences, Hue University

3 Hue Center of Information and Technology

*Email: ndnquang@hueuni.edu.vn

Received: 17/8/2023; Received in revised form: 21/8/2023; Accepted: 4/12/2023

ABSTRACT

Convolutional neural network (CNN) is widely used in many areas such as image

recognition, object detection, and self-driving cars and it requires a huge amount of

computation and memory usage when the number of layers increases. Hence, it is

critical to reduce its computational complexity and memory usage. In this paper,

author uses 8-bit fixed-point quantization to greatly reduce the memory space

requirement of the feature maps and weights and the accuracy of LeNet-5 with

MNIST dataset is only slightly reduced. In the hardware accelerator, author

proposes a highly flexible CNN accelerator with reconfigurable layers. The layers

contain padding, convolution, ReLU, max-pooling and flatten operations, and they

are reconfigurable. The advantage of the proposed method is that by reusing layers

or circuits, it is possible to reduce hardware resources.

Keywords: artificial intelligence (AI), convolutional neural network (CNN), IC

design, software-hardware codesign, reconfigurable.

1. INTRODUCTION

In recent years, Deep Learning Neural Network (DNN) has become increasingly

popular, and there are many kinds of DNN. One popular and well-known DNN model

is Convolutional Neural Network (CNN). CNN keeps the advantage of the Artificial

Neural Network (ANN) and uses a massive network of neurons and synapses to

automatically extract features from data. It has been extensively adopted in various

applications owing to the high accuracy, such as image classification, object detection,

speech recognition, visual question answering, semantic segmentation, and self-driving

Software – hardware codesign for reconfigurable convolutional neural network acceleration

126

cars. With sufficient training data and highly complex and flexible feature extraction,

CNN performs higher accuracy than traditional image processing methods in the above

applications.

As the application of CNNs becomes more complex and more accurate, the

number of layers and computation required are also increasing. For example, the CNN

models along with more than a hundred layers, such as ResNet101 [1] and DenseNet121

[2] require a considerable amount of computing resources and memory space. Therefore,

it is critical to reduce the computational complexity and memory usage of CNN.

To address this problem, many researchers have proposed various CNN

inference process acceleration techniques. In order to improve computation efficiency,

accelerators in FPGA and ASIC platforms have been proposed while GPU has a low

energy efficiency despite powerful performance.

However, since FPGA and ASIC have limited on-chip memory capacity and

limited off-chip memory bandwidth, it is necessary to reduce the memory usage. To

tackle this problem, fixed-point data quantization is a good way to relieve the memory

capacity and bandwidth pressure. Fixed-point data quantization means using shorter

fix-point number representation of weights and/or data values to represent floating-

point ones in the original system. Implementing fixed-point arithmetic units on FPGA is

much more efficient compared with floating-point number representations. It will

significantly reduce the requirement of both on-chip memory capacity and off-chip

memory bandwidth. Consequently, most of the previous CNN accelerators have been

making use of fixed-point numbers instead of floating-point numbers [3][4][5].

Smaller neural networks are more feasible to deploy on FPGAs and other

hardware with limited memory. Layer reuse is the technique that CNN layers are used

repeatedly without the need for introducing new layers to obtain the smaller network.

The layer must be reconfigurable to reuse with different input and output shapes [6].

More and more CNN accelerators are built mostly using group convolutional layers to

greatly reduce computation cost while maintaining accuracy [7][8][9]. However, CNN

contains many types of layer and it is possible to reuse in the same network.

Therefore, in this work, we propose a novel CNN accelerator design with

reconfigurable layers. The feature maps and weight are quantized with the 8-bit fixed-

point format. The contributions of this work are summarized as follows:

• We use 8-bit fixed-point to save memory usage but remain the accuracy.

• We propose a CNN accelerator, which contains padding, convolution, Rectified

Linear Unit (ReLU) [10], max-pooling and flatten operations.

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế

 Tập 23, Số 1 (2023)

127

• The convolution layer, max-pooling layer and flatten layer are reconfigurable. It

is able to perform convolutional operations, max-pooling or flatten operations

respectively. A system must be flexible enough to execute different neural

network models. To achieve this, a flexible description is necessary.

2. CNN MODEL SELECTION AND DATA QUANTIZATION

This section first describes the overview of our workflow. Then it presents the

CNN model used in this work and describes the fixed-point quantization used in this

work.

2.1. Workflow overview

Figure 1 shows the flow of our work. The flow includes the software simulation

and hardware platform.

Model

configurations
Model training

Fixed-point

quantization

Quantized

parameters

Quantized

input

Output result
Hardware CNN

accelerator

Parameter

Testing data

Traning data

Hardware platformSoftware simulation

Figure 1. Workflow overview.

The purpose of the software simulation is to prepare the parameters that are

needed for hardware design. In the software simulation, a CNN model is selected,

trained, and quantized. First, the CNN model which is suitable for implementation in

hardware CNN accelerator is selected. The configurations of the model such as the

number of layers and the filter size of each layer are generated. Then, the model is trained

on the server with the GPU to get the model parameters. Finally, in order to reduce the

bit width of data in the CNN model, the input data, model parameters (including

weights and biases) are quantized so that they can be suitable for the CNN accelerator

design.

In the hardware platform, based on the model configurations and quantized

parameters, we implement the CNN hardware accelerator. After the CNN hardware

accelerator is implemented, the quantized testing data can be used to evaluate the

accuracy of the CNN hardware accelerator.

Software – hardware codesign for reconfigurable convolutional neural network acceleration

128

2.2. CNN model selection and training

 First, a CNN model suitable for implementing in a CNN accelerator is selected.

Considering the hardware system and implementation, the amount of on-chip memory

is limited, and most of the data must be transferred from off-chip memory. However,

the off-chip memory data transfer time is much longer than on-chip memory. Therefore,

considering the memory issue, we decided to choose a CNN model with an insufficient

number of parameters to apply the CNN accelerator. In addition to reducing the

memory transfer time, the on-chip memory of the accelerator can also store all data for

each layer of CNN.

Based on the selection principle of the previous section, LeNet-5 [10] is selected

as the model of CNN accelerator because of the small number of parameters. The well-

known LeNet-5 based on CNN was successfully applied to character recognition. LeNet-

5 is composed of seven main layers, which are one input layer, two convolutional layers,

two pooling layers, two fully-connected layers, and one output layer, as shown in figure

2.

Figure 2. Illustration of LeNet-5 model.

Table 1 shows the configuration about LeNet-5 model. In table 1, conv2d is the

convolutional layer, max_pooling2d is the max-pooling layer, flatten is flatten layer, and

dense is the fully-connected layer. As can be seen from table 1, the total amount of

parameters in LeNet-5 is also less than 1M. Thus, we choose LeNet-5 as the model of the

CNN accelerator.

Table 1. Summary of LeNet-5 architecture.

Layer Output Shape Parameter #

conv2d_1 (28, 28, 16) 160

max_pooling2d_1 (14, 14, 16) 0

conv2d_2 (14, 14, 36) 5,220

max_pooling2d_2 (7, 7, 36) 0

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế

 Tập 23, Số 1 (2023)

129

flatten_1 (1764) 0

dense_1 (120) 211,800

dense_2 (84) 10,164

dense_3 (10) 850

Total parameters 228,194

Table 2. Accuracy comparison of different fraction point positions of 8-bit data format

in LeNet-5 model.

Integer bits Fraction bits Accuracy

1 7 0.976

2 6 0.980

3 5 0.984

4 4 0.988

5 3 0.980

6 2 0.884

7 1 0.168

The MNIST handwritten digit database is used for training and testing. The

LeNet-5 CNN is implemented with python language in this work, in which the floating-

point feature data and weights are used. The input data of LeNet-5 is 28x28 grayscale

images, 784 bytes in total, and the images are normalized before the convolution

operation. There is padding throughout the calculation. The ReLU serves as activation

functions. If the input of this function is x, the output is max(x, 0).

After training 20 epochs, the test is processed, and the results show that the

accuracy rate of LeNet-5 implemented in this paper is up to 99.04%, which meets the

requirement.

2.3. Data quantization

Generally, to guarantee high recognition accuracy, 32-bit floating-point data and

weights are used to train the CNN model. However, such high data precision brings

more pressure to hardware because high data precision usually requires more

computational resources and a larger memory footprint. Quantization results for

different CNN models in [11] show that 8-bit fixed-point quantization brings negligible

performance loss for several networks. In addition, the accuracy of the neural network

with more than 8-bit precision is almost equal to the floating-point. Therefore, we adopt

Software – hardware codesign for reconfigurable convolutional neural network acceleration

130

an 8-bit hardware design for the smallest precision but still keeping the floating-point

format accuracy. However, the difference in the position of the fraction point directly

affects the data representative range and the precision of data.

8-bit fixed-point for the convolution weights and feature maps data are used to

test in the process of inference with different radix point position. Table 2 shows the

accuracy comparison of different fraction point positions of 8-bit data format in LeNet-

5 model. According to table 2, we can see that the 8-bit fixed-point quantization with 4-

bit integer part and 4-bit fraction part format maintains the highest accuracy. Compared

to the floating-point model, the result shows that the accuracy is slightly reduced, less

than 1%. Thus, we set the 8-bit data format, which has a 4-bit integer part and 4-bit

fraction part as the quantization for both feature maps and weights in LeNet-5 model.

3. HARDWARE ARCHITECTURE

This section first describes the whole platform. Then, it details the reconfigurable

layers. Finally, the architecture of the reuse strategy is explained.

3.1. Platform overview

Figure 3 shows an overview of the platform. The platform is implemented on

Xilinx's XC7Z020-1CLG400C FPGA, which contains a processing system and a

programming logic. The processing system contains a Zynq CPU, a DMA, and off-chip

memory. The programming logic contains a controller, a convolution unit (Conv Unit),

an erase unit (Eras Unit), a max-pooling unit (Maxp Unit), and block memories (BRAMs).

There are five BRAMs in the programming logic: Configuration BRAM, Weight BRAM,

Bias BRAM, Fmap_A BRAM, and Fmap_B BRAM. The information stored in each BRAM

is listed in table 3.

In this platform, the Zynq CPU controls the DMA to transfer data between the

off-chip memory and block memories. The Controller gets information from the

Configuration BRAM and controls the flow and execution of the entire circuit. The Conv

Unit is the convolution circuit. There is a convolution processing element inside, which

convolves M 3-dimensional filters with a 3-dimensional input feature map to generate a

3-dimensional output feature map by accumulating the partial sums. The Maxp Unit is

the max-pooling circuit, which divides an image into small subtitles of given window

size and then replaces each subtitle with its largest element. There is a max-pooling

processing element inside. Finally, the Eras Unit is the circuit that is used to make sure

the fmap BRAM is washed before it changes the role.

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế

 Tập 23, Số 1 (2023)

131

Programming Logic

Reconfigurable Layers

AXI

Processing

System ZYNQ

CPU
DMA

Off-chip

memory

BRAM

Configuration

BRAM

Eras Unit

Conv Unit

Maxp Unit

Fmap_A

BRAM

Weight

BRAM

Fmap_B

BRAM

Bias

BRAM

Memory

Selector

Controller

Figure 3. Platform overview.

Table 3. Information stored in each BRAM.

BRAM Storage description

Configuration BRAM 3-dimensional input and output feature map size; filter size and

filter stride; padding setting and size; max-pooling setting, size,

and stride;

Weight BRAM 8-bit weights

Bias BRAM 8-bit biases

Fmap_A BRAM input/output feature map of each layer

Fmap_B BRAM output/input feature map of each layer

The operations of the platform are as follows. At first, all input feature maps and

weights are stored in the off-chip memory. The Zynq CPU controls the DMA through

the AXI bus and transfers the data into the corresponding BRAM. After the data are

transferred, the CPU sends a signal to the Controller to start the accelerator. After all the

computations are finished, the DMA moves the results back to the off-chip memory from

the fmap BRAM.

3.2. Reconfigurable layers

To further reduce the hardware resource, the layers can be reused multiple times.

We propose reconfigurable layers, which means that by changing the configuration

Software – hardware codesign for reconfigurable convolutional neural network acceleration

132

parameters of the reconfigurable layers, the hardware accelerator can be easily reused in

the N-times in any network.

In this case, the LeNet-5 model contains two convolutional layers (conv-1, conv-

2), two max-pooling layers (pool-1, pool-2), three fully-connected layers (fc-1, fc-2, fc-3).

Due to the repetition of the layers that function the same, they can be reused. For

instance, the conv-2 layer can be replaced by the conv-1 layer with a set of new

configuration parameters given in table 4. Because of the different shapes between the

two layers, the hardware needs to be reconfigured to support the new shape of the

second one. The same thing happens with the rest.

Table 4. Configuration parameters for reconfigurable layers in LeNet-5.

Configuration parameter Description 1st setting 2nd setting

R Output height 28 14

C Output width 28 14

M Output depth 16 36

IR Input height 30 16

IC Input width 30 16

N Input depth 1 16

K Filter size 3 3

S Stride 1 1

nIR MAXP output height 16 7

nIC MAXP output width 16 7

nP Padding 1 0

MP MAXP stride 2 2

4. EXPERIMENTAL SETUP AND RESULTS

This section first introduces our experimental environment and then provides

the results.

4.1. Experimental setup

The experiments are divided into two steps. First, the software CNN models are

implemented in Python and trained. 8-bit fixed-point quantization has been applied for

the input data and weights in the software CNN model. After the training process is

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế

 Tập 23, Số 1 (2023)

133

finished, the model's configuration, input feature map, and weights are stored for the

hardware platform.

The hardware design is implemented on the TUL PYNQ-Z2 FPGA development

board (figure 4), where the FPGA chip is XC7Z020. The development software we used

is Vivado (v2018.3). Our hardware design is programmed in Verilog and packaged into

Vivado IP to build on FPGA hardware system. We also use 8-bit fixed-point quantization

in hardware. Therefore, the data format in software and hardware computation are

equivalent, and the accuracies of the inference are also the same.

Figure 4. The hardware design in Vivado.

4.2. Results

4.2.1. Resources utilization

Table 5 shows the hardware resources utilization of the whole system. The

system of this work, as shown in figure 3, which includes the CNN accelerator, CPU,

DMA, AXI bus, BRAMs, etc. In details, the hardware implementation on FPGA has the

usage of LUT’s, FF’s, BRAM’s and DSP’s, only about 14%, 9%, 9% and 2% respectively.

Table 5. Resource utilization of proposed architecture on Pynq-Z2 FPGA.

 LUT’s FF’s BRAM’s DSP’s

Resouce available 53,200 106,400 140 220

This work 7,696 9,534 12 5

Ultilization (%) 14.47 8.96 8.57 2.27

Therefore, this work is easily applied to the devices sensitive to power

consumption and memory footprint.

Software – hardware codesign for reconfigurable convolutional neural network acceleration

134

4.2.2. Memory usage comparison

Figure 5 indicates the maximum memory usage of parameters in the traditional

CNN and this work layer by layer. The weights and input feature maps in these

networks are all represented using 8-bit fixed-point numbers. It can be seen that the

traditional CNN needs 2,796.49KB to store all of the parameters of LeNet-5 model. In

this work, the model requires only 8 bits to store each weight. Therefore, only 684.58KB

are required to store the weights in total. It is clear that memory usage of 8-bit fixed-

point weights after quantization is significantly reduced about 4 times compared to

floating-point one in every layer of LeNet-5 model.

Figure 5. Memory usage of weights and biases in the floating-point model and this work (8-bit

fixed-point).

4.2.3. Critical path delay, cell area and power result

In order to obtain the critical path delay, cell area and power, the hardware

accelerator is implemented by Verilog and synthesized using Design Compiler with the

TSMC130nm process technology.

Table 6. Synthesis result.

Critical path delay (ns) Cell area (µm2) Power (µW)

20.54 695,586 1,264.49

Table 6 indicates the critical path delay, cell area, and power consumption of the

accelerator. In the design, the minimum critical path delay is 20.54ns, the cell area is

695,586µm2, and power consumption is 1,264.49µW.

2 62

2601

119
10

2796

0 16

635

30 3

685

0

500

1000

1500

2000

2500

3000

conv2d_1 conv2d_2 dense_1 dense_2 dense_3 Total

M
em

o
ry

 U
sa

ge
 (

K
B

)

Layer

Floating-point 8-bit fixed-point

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế

 Tập 23, Số 1 (2023)

135

5. CONCLUSION

In this work, we propose a hardware CNN accelerator with reconfigurable layers

reuse. We use 8-bit fixed-point to save memory usage but the accuracy is remained.

Memory storage of CNN model with 8-bit fixed-point format is reduced 4 times

compared to the floating-point model. This accelerator contains padding, convolution,

ReLU, max-pooling and flatten operations. The layers are reconfigurable. The hardware

implementation on FPGA has the usage of LUT’s, FF’s, BRAM’s and DSP’s, only about

14%, 9%, 9% and 2% respectively. In the design, the minimum critical path delay is

20.54ns, the cell area is 695,586µm2, and power consumption is 1,264.49µW. In addition,

our layers can be reused for multiple times at multiple places in the CNN accelerator to

further improve the results.

ACKNOWLEDGEMENT

The study is conducted within the framework of a grassroots-level research

project coded as ĐHKH2023A-02.

REFERENCES

[1] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778)

[2] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected

Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (pp. 4700-4708).

[3] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J. (2015). Optimizing FPGA-based

Accelerator Design for Deep Convolutional Neural Networks. In Proceedings of The 2015

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (pp. 161-170).

[4] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2014). Diannao: A

Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning. ACM

SIGARCH Computer Architecture News, 42(1), 269-284.

[5] Sankaradas, M., Jakkula, V., Cadambi, S., Chakradhar, S., Durdanovic, I., Cosatto, E., &

Graf, H. P. (2009). A Massively Parallel Coprocessor for Convolutional Neural Networks.

In 2009 20th IEEE International Conference on Application-specific Systems, Architectures and

Processors (pp. 53-60).

[6] Chen, Y. H., Krishna, T., Emer, J. S., & Sze, V. (2016). Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE Journal of Solid-

state Circuits, 52(1), 127-138.

[7] Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An Extremely Efficient

Convolutional Neural Network for Mobile Devices. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp. 6848-6856).

Software – hardware codesign for reconfigurable convolutional neural network acceleration

136

[8] Freeman, I., Roese-Koerner, L., & Kummert, A. (2018). Effnet: An Efficient Structure for

Convolutional Neural Networks. In 2018 25th IEEE International Conference on Image

Processing (ICIP) (pp. 6-10).

[9] Köpüklü, O., Babaee, M., Hörmann, S., & Rigoll, G. (2019). Convolutional Neural Networks

with Layer Reuse. In 2019 IEEE International Conference on Image Processing (ICIP) (pp. 345-

349).

[10] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied

to Document Recognition. Proceedings of the IEEE, 86(11), 2278-2324.

[11] Guo, K., Han, S., Yao, S., Wang, Y., Xie, Y., & Yang, H. (2017). Software-Hardware Codesign

for Efficient Neural Network Acceleration. IEEE Micro, 37(2), 18-25.

THIẾT KẾ PHẦN MỀM – PHẦN CỨNG CHO BỘ TĂNG TỐC MẠNG NƠ-RON

TÍCH CHẬP (CNN) CÓ KHẢ NĂNG TÁI CẤU HÌNH

Nguyễn Đức Nhật Quang1*, Nguyễn Thanh Bình2, Phạm Thị Thúy Sang3

1 Khoa Điện, Điện tử và Công nghệ vật liệu, Trường Đại học Khoa học, ĐH Huế

2 Phòng Kế hoạch tài chính và Cơ sở vật chất, Trường Đại học Khoa học, ĐH Huế

3 Trung tâm Công nghệ thông tin tỉnh Thừa Thiên Huế

*Email: ndnquang@hueuni.edu.vn

TÓM TẮT

Mạng nơ-ron tích chập (CNN) được áp dụng rộng rãi trong nhiều lĩnh vực như nhận

dạng hình ảnh, phát hiện đối tượng, xe tự lái, nó yêu cầu tính toán và bộ nhớ lớn khi

số lượng lớp tăng. Vì vậy, việc giảm độ phức tạp tính toán và sử dụng bộ nhớ là rất

quan trọng. Trong nghiên cứu này, tác giả áp dụng lượng tử hóa dấu phẩy tĩnh 8 bit

để giảm đáng kể yêu cầu bộ nhớ cho bản đồ đặc trưng và trọng số, trong khi độ

chính xác của LeNet-5 trên tập dữ liệu MNIST chỉ giảm một cách không đáng kể. Về

phần cứng, tác giả đề xuất một bộ tăng tốc CNN cực kỳ linh hoạt với các lớp có thể

tái cấu hình. Các lớp này bao gồm các chức năng padding, convolution, ReLU, max-

pooling và flatten, và chúng có thể được tái cấu hình. Lợi thế của phương pháp đề

xuất là có thể tái sử dụng các lớp hoặc mạch, giúp giảm tài nguyên phần cứng.

Từ khóa: trí tuệ nhân tạo (AI), mạng nơ-ron tích chập (CNN), thiết kế vi mạch, đồng

thiết kế phần mềm – phần cứng, cấu hình lại.

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế

 Tập 23, Số 1 (2023)

137

Nguyễn Đức Nhật Quang sinh ngày 08/10/1992 tại Thừa Thiên Huế.

Năm 2015, ông tốt nghiệp kỹ sư chuyên ngành Điện tử - Viễn thông,

Trường Đại học Khoa học, Đại học Huế. Năm 2020, ông nhận bằng thạc

sĩ chuyên ngành Khoa học máy tính và Kỹ thuật thông tin (CSIE) tại

Trường Đại học Quốc gia Thành Công (NCKU), Đài Loan. Hiện nay, ông

đang công tác tại Khoa Điện, Điện tử và Công nghệ vật liệu, Trường Đại

học Khoa học, Đại học Huế.

Lĩnh vực nghiên cứu: Thiết kế vi mạch số, Trí thông minh nhân tạo (AI),

Internet vạn vật kết nối (IoT), Hệ thống nhúng.

Nguyễn Thanh Bình sinh ngày 02/12/1981 tại Quảng Trị. Năm 2003, ông

tốt nghiệp cử nhân chuyên ngành Công nghệ thông tin, Trường Đại học

Công nghệ, Đại học Quốc gia Hà Nội. Năm 2007, ông nhận bằng thạc sĩ

chuyên ngành Khoa học máy tính tại Trường Đại học Khoa học, Đại học

Huế. Hiện nay, ông đang công tác tại Trường Đại học Khoa học, Đại học

Huế.

Lĩnh vực nghiên cứu: Mạng máy tính, Khoa học máy tính.

Phạm Thị Thúy Sang sinh ngày 23/3/1998 tại Quảng Trị. Năm 2020, bà

tốt nghiệp cử nhân chuyên ngành Công nghệ thông tin, Trường Đại học

Khoa học, Đại học Huế. Hiện nay, bà đang công tác tại Trung tâm Công

nghệ Thông tin tỉnh Thừa Thiên Huế (Hue CIT).

Lĩnh vực nghiên cứu: Công nghệ phần mềm.

Software – hardware codesign for reconfigurable convolutional neural network acceleration

138

